8 Interactive mapping with Leaflet
While not a part of {shiny}
, many people working in the environmental sciences use maps to display study areas, sampling locations, geospatial model predictions, environmental layers, and more. While this could technically be achieved using static map layers with standard R plotting options, it is often much more difficult to explore these spatial layers in greater detail. By using interactive mapping options built upon JavaScript libraries such as Leaflet, we can explore and present data dynamically. This can be even more powerful if integrating Leaflet (via the {leaflet}
R package) with Shiny. The examples provided below show different layers and features that can be used within a standard Leaflet map, as well as ways to integrate within a Shiny app to extend interactivity even further.
8.1 Creating a simple Leaflet map
At it’s simplest, a basic Leaflet map can be created using 2 lines of code:
- 1
- Function to initialize Leaflet map
- 2
- Function to add simple OpenStreetMap (OSM) basemap layer
where different options for displaying the map are added by using a “pipe” operator, such as the base R pipe (|>
) available in R versions 4.0.0+, or the {magrittr}
pipe (%>%
) that’s available when loading {magrittr}
, {dplyr}
, or {tidyverse}
. A wide range of basemaps can be chosen from and applied using the addProviderTiles()
function, where the argument provider
is specified using one of the basemaps available from the providers
object:
head(providers, n = 10)
$OpenStreetMap
[1] "OpenStreetMap"
$OpenStreetMap.Mapnik
[1] "OpenStreetMap.Mapnik"
$OpenStreetMap.DE
[1] "OpenStreetMap.DE"
$OpenStreetMap.CH
[1] "OpenStreetMap.CH"
$OpenStreetMap.France
[1] "OpenStreetMap.France"
$OpenStreetMap.HOT
[1] "OpenStreetMap.HOT"
$OpenStreetMap.BZH
[1] "OpenStreetMap.BZH"
$MapTilesAPI
[1] "MapTilesAPI"
$MapTilesAPI.OSMEnglish
[1] "MapTilesAPI.OSMEnglish"
$MapTilesAPI.OSMFrancais
[1] "MapTilesAPI.OSMFrancais"
leaflet() |>
addProviderTiles(provider = providers$Esri.WorldImagery) |>
setView(lat = 40, lng = -85, zoom = 3)
Additionally, there may be some instances where it’s useful to have multiple basemaps available for different purposes (such as political boundaries, roads and places of interest, as well as satellite imagery). This can be accomplished through the addition of multiple calls of addProviderTiles
and the use of the layersControlOptions()
function to manage the layer menu.
leaflet() |>
addProviderTiles(provider = providers$CartoDB.Positron, group = "CartoDB") |>
addProviderTiles(provider = providers$Esri.WorldImagery, group = "Satellite") |>
addProviderTiles(provider = providers$OpenStreetMap, group = "OSM") |>
addLayersControl(position = "topright", baseGroups = c("CartoDB", "Satellite", "OSM")) |>
setView(lat = 40, lng = -85, zoom = 3)
8.2 Adding vector layers
As with other GIS software, a variety of vector spatial layers can be added to Leaflet maps, including points, lines and polygons. Moreover, there are additional options when mapping markers/points, such as using icons or creating marker clusters for points near each other. These spatial layers can be either {sf}
objects, {map}
objects, or data.frame
objects that include longitude and latitude.
As an example, let’s add points (via addCircleMarkers()
) and polygons (via addPolygons()
) to a map to show how these can be specified. Additional information on adding and customizing markers and polygons provide additional information and examples for adding these layers and including labels upon hovering or popups upon clicking spatial features.
library(rnaturalearth)
library(sf)
# Load polygon layers
ca <- rnaturalearth::ne_states(country = "Canada", returnclass = "sf")
# Simulate fake locations to map
pts <- data.frame(lon = runif(n = 50, min = -120, max = -70),
lat = runif(n = 50, min = 50, max = 60))
1leaflet(ca) |>
addProviderTiles(provider = providers$CartoDB.Positron, group = "CartoDB") |>
addProviderTiles(provider = providers$Esri.WorldImagery, group = "Satellite") |>
addProviderTiles(provider = providers$OpenStreetMap, group = "OSM") |>
addLayersControl(position = "topright",
baseGroups = c("CartoDB", "Satellite", "OSM"),
2 overlayGroups = c("provinces", "pts")) |>
3 addPolygons(group = "provinces") |>
4 addCircleMarkers(data = pts,
5 lng = ~lon,
lat = ~lat,
fillColor = "black",
fillOpacity = 1,
radius = 3,
stroke = FALSE,
6 group = "pts")
- 1
-
You can optionally add a spatial object to the
leaflet()
function at the beginning, which will then be applied to theaddPolygons()
function in this case. Leaflet uses the spatial extent of this layer to set its own center location and zoom level. - 2
-
In order to toggle spatial layers on/off, make sure to add these group names to
overlayGroups
. - 3
-
Define group name for polygon layer, which is included in
addLayersControl()
tooverlayGroups
. - 4
-
Alternatively (and for any other datasets), you’ll need to define these within the function using the
data
argument. - 5
-
When supplying columns from a non-spatial object (such as a
data.frame
or other columns of ansf
object), you can specify these using the~
symbol before the name of the column (without quotation marks). - 6
- Group name is also defined for the circle marker layer
8.3 Adding raster layers
We can also add raster layers to Leaflet maps as well. Currently, the latest version of {leaflet}
(v2.2.2) now supports SpatRaster
layers from {terra}
, while also still supporting RasterLayer
objects from {raster}
. Given that {raster}
is no longer maintained and will eventually be deprecated due to its outdated dependencies, it is recommended to use {terra}
SpatRasters for these raster layers. An example layer is mapped below, but additional information on customizing the appearance of these layers can be found on the {leaflet}
website.
library(terra)
# Read sea surface temperature layer from NOAA THREDDS server (using data from 1 Jan 2025)
<- rast("https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/sst.day.mean.2025.nc")[[1]]
r <- crop(r, ext(280, 300, 35, 50))
r
# Define color palette for raster layer
<- colorNumeric("inferno", domain = values(r), na.color = "transparent")
pal
leaflet() |>
addProviderTiles(provider = providers$CartoDB.DarkMatter, group = "CartoDB") |>
addLayersControl(position = "topright",
baseGroups = "CartoDB",
overlayGroups = "SST") |>
addRasterImage(r, colors = pal, opacity = 0.8, group = "SST") |>
addLegend(title = "SST (°C)", position = "bottomright", pal = pal, values = values(r))
8.4 Integrating in Shiny app
While Leaflet maps have plenty of interactive functionality on their own (due to the underlying JavaScript code), there are still some other features that aren’t available, such as performing any geoprocessing steps or dynamically updating certain layers to view at a time (without overloading the map). Functions from {leaflet}
make this relatively easy to accomplish, for which the standard function for adding a Leaflet map to the UI is leafletOutput()
, whereas the function to store the Leaflet map on the server side is renderLeaflet()
. However, there is a small wrinkle where an additional function (leafletProxy()
) is required for updating reactive components of the map based on Shiny input widgets. A simple example is shown below on how to easily integrate an interactive Leaflet map into a Shiny app.
library(shiny)
library(bslib)
library(leaflet)
library(terra)
# Read sea surface temperature layer from NOAA THREDDS server (using data from 1 - 10 Jan 2025)
r <- rast("https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/sst.day.mean.2025.nc")[[1:10]]
r <- crop(r, ext(280, 300, 35, 50))
##########
### UI ###
##########
ui <- page_sidebar(title = "Sea surface temperature in Northwest Atlantic",
theme = bs_theme(bootswatch = "flatly"),
sidebar = sidebar(
selectInput("date",
"Choose a date:",
choices = time(r),
selected = time(r)[1])
),
1 leafletOutput("map")
)
##############
### Server ###
##############
server <- function(input, output, session) {
2 output$map <- renderLeaflet({
leaflet() |>
setView(lng = mean(ext(r[[1]])[1:2]),
lat = mean(ext(r[[1]])[3:4]),
zoom = 5) |>
addProviderTiles(provider = providers$Esri.OceanBasemap, group = "Ocean") |>
addLayersControl(position = "topright",
baseGroups = "Ocean",
overlayGroups = "SST")
})
# Create reactive SpatRaster
sst <- reactive({
r[[time(r) == input$date]]
})
observe({
# Define color palette for raster layer
pal <- colorNumeric("inferno", domain = values(sst()),
na.color = "transparent")
3 leafletProxy("map") |>
clearControls() |>
clearImages() |>
addRasterImage(sst(), colors = pal, opacity = 0.8, group = "SST") |>
addLegend(title = "SST (°C)", position = "bottomright", pal = pal,
values = values(sst()))
})
}
###############
### Run app ###
###############
shinyApp(ui, server)
- 1
- Place Leaflet map on UI
- 2
- Render “static” version of Leaflet map that is not reactive
- 3
- Update base version of Leaflet map with reactive elements
For additional information on adding layers to Leaflet maps and customizing the look and feel of these elements, please visit the {leaflet}
website. You can look through this webpage specifically for more information on integrating with Shiny.
Exercise 1
library(tidyverse)
library(terra)
library(sf)
library(leaflet) #v2.2.2 (CRAN)
library(leafem) #v0.2.3.9006 (GitHub)
library(viridis)
library(shiny)
library(shinyWidgets)
source("../R_examples/leaflet_utils.R") #for function addLegend_decreasing
#################
### Load data ###
#################
# Simulated tracks
<- read_csv("../R_examples/data/Simulated tracks.csv")
tracks <- tracks |>
tracks.sf st_as_sf(coords = c('x','y'), crs = 4326)
<- tracks.sf |>
tracks.sf2 group_by(id) |>
summarize(do_union = FALSE) |>
st_cast("MULTILINESTRING")
# Monthly SST (2021)
<- read_csv("../R_examples/data/Monthly_SST_2021.csv")
sst <- sst |>
sst.rast split(~month) |>
::map(~rast(.x[,c('x','y','sst')], type = "xyz", crs = "EPSG:4326")) |>
purrrrast()
# Offshore wind leases
<- st_read("../R_examples/data/NE_Offshore_Wind.shp")
wind $State <- gsub(pattern = "Massachussets", "Massachusetts", wind$State) #fix typo
wind
# Define color palettes
<- colorFactor("Dark2", factor(tracks$id))
tracks.pal <- colorFactor("Set3", factor(wind$State))
poly.pal
<- range(as.vector(values(sst.rast)), na.rm = TRUE)
sst.range <- colorNumeric('magma',
rast.pal2 domain = sst.range,
na.color = "transparent")
##########
### UI ###
##########
<- fluidPage(title = "Animal Movement, Offshore Wind Development, and SST",
ui
leafletOutput("mymap", width = "100%", height = "850px"),
absolutePanel(class = "panel panel-default",
top = 300,
left = 25,
width = 250,
fixed = TRUE,
draggable = TRUE,
height = "auto",
h3("Choose which layers to map"),
pickerInput(inputId = "tracks",
label = "Select tracks",
choices = unique(tracks$id),
selected = unique(tracks$id),
multiple = TRUE),
pickerInput(inputId = "polygons",
label = "Select polygons by state",
choices = unique(wind$State),
selected = unique(wind$State),
multiple = TRUE),
selectInput(inputId = "raster",
label = "Select month of SST",
choices = month.abb,
selected = month.abb[1])
#close absolutePanel
)
#close fluidPage
)
##############
### Server ###
##############
<- function(input, output, session) {
server
#Create reactive objects based on selected input
<- reactive({
tracks.out |>
tracks.sf2 filter(id %in% input$tracks)
})
<- reactive({
wind.out |>
wind filter(State %in% input$polygons)
})
<- reactive({
sst.out which(names(sst.rast) == input$raster)]]
sst.rast[[
})
## Create map w/ non-reactive components
$mymap <- renderLeaflet({
output
## Static Leaflet basemap and widgets
leaflet() |>
setView(lng = -73, lat = 41.5, zoom = 6) |>
addProviderTiles(provider = providers$Esri.OceanBasemap, group = "Ocean Basemap",
options = providerTileOptions(zIndex = -10)) |>
addProviderTiles(provider = providers$Esri.WorldImagery, group = "World Imagery",
options = providerTileOptions(zIndex = -10)) |>
addProviderTiles(provider = providers$OpenStreetMap, group = "Open Street Map",
options = providerTileOptions(zIndex = -10)) |>
addLayersControl(baseGroups = c("Ocean Basemap", "World Imagery", "Open Street Map"),
overlayGroups = c("SST", "Offshore Wind Leases", "Tracks"),
options = layersControlOptions(collapsed = TRUE, autoZIndex = FALSE),
position = "bottomleft") |>
addScaleBar(position = "bottomright") |>
addMeasure(position = "topleft",
primaryLengthUnit = "kilometers",
primaryAreaUnit = "hectares",
activeColor = "#3D535D",
completedColor = "#7D4479") |>
addMouseCoordinates()
#close renderLeaflet
})
## Add reactive elements to Leaflet map
observe({
leafletProxy(mapId = "mymap") |>
clearMarkers() |>
clearShapes() |>
clearImages() |>
clearControls() |>
addRasterImage(x = sst.out(),
colors = rast.pal2,
opacity = 1,
group = "SST") |>
addImageQuery(sst.out(), group = "SST") |> #add raster query
addLegend_decreasing(pal = rast.pal2,
values = as.vector(values(sst.rast)),
title = "SST (\u00B0C)",
decreasing = TRUE) |>
addPolygons(data = wind.out(),
color = ~poly.pal(State),
fillOpacity = 1,
stroke = FALSE,
label = ~paste0("State: ", State),
group = "Offshore Wind Leases") |>
addLegend(pal = poly.pal,
values = wind.out()$State,
title = "State",
opacity = 1) |>
addPolylines(data = tracks.out(),
color = ~tracks.pal(id),
opacity = 0.75,
weight = 2,
label = ~paste0("ID: ", id),
group = "Tracks") |>
addLegend(pal = tracks.pal,
values = tracks.out()$id,
title = "ID",
position = "topleft")
#close observe
})
#close server function
}
###############
### Run app ###
###############
shinyApp(ui = ui, server = server)
Using the included code:
- Convert app to a sidebar layout from the fluidPage layout with absolute panel
- Change the linewidth of the tracks to a value of 4
- Change the color palette variable from ‘State’ to ‘Shape_Area’, use the ‘viridis’ palette from
{viridis}
, and updated the legend title while showing values in decreasing order
library(tidyverse)
library(terra)
library(sf)
library(leaflet) #v2.2.2 (CRAN)
library(leafem) #v0.2.3.9006 (GitHub)
library(viridis)
library(shiny)
library(shinyWidgets)
library(bslib)
source("../R_examples/leaflet_utils.R") #for function addLegend_decreasing
#################
### Load data ###
#################
# Simulated tracks
<- read_csv("../R_examples/data/Simulated tracks.csv")
tracks <- tracks |>
tracks.sf st_as_sf(coords = c('x','y'), crs = 4326)
<- tracks.sf |>
tracks.sf2 group_by(id) |>
summarize(do_union = FALSE) |>
st_cast("MULTILINESTRING")
# Monthly SST (2021)
<- read_csv("../R_examples/data/Monthly_SST_2021.csv")
sst <- sst |>
sst.rast split(~month) |>
::map(~rast(.x[,c('x','y','sst')], type = "xyz", crs = "EPSG:4326")) |>
purrrrast()
# Offshore wind leases
<- st_read("../R_examples/data/NE_Offshore_Wind.shp")
wind $State <- gsub(pattern = "Massachussets", "Massachusetts", wind$State) #fix typo
wind
# Define color palettes
<- colorFactor("Dark2", factor(tracks$id))
tracks.pal <- colorNumeric("viridis", wind$Shape_Area)
poly.pal
<- range(as.vector(values(sst.rast)), na.rm = TRUE)
sst.range <- colorNumeric('magma',
rast.pal2 domain = sst.range,
na.color = "transparent")
##########
### UI ###
##########
<- page_sidebar(title = "Animal Movement, Offshore Wind Development, and SST",
ui
sidebar = sidebar(title = h3("Choose which layers to map"),
width = 350,
pickerInput(inputId = "tracks",
label = "Select tracks",
choices = unique(tracks$id),
selected = unique(tracks$id),
multiple = TRUE),
pickerInput(inputId = "polygons",
label = "Select polygons by state",
choices = unique(wind$State),
selected = unique(wind$State),
multiple = TRUE),
selectInput(inputId = "raster",
label = "Select month of SST",
choices = month.abb,
selected = month.abb[1])
),
leafletOutput("mymap", width = "100%", height = "850px")
#close page_sidebar
)
##############
### Server ###
##############
<- function(input, output, session) {
server
#Create reactive objects based on selected input
<- reactive({
tracks.out |>
tracks.sf2 filter(id %in% input$tracks)
})
<- reactive({
wind.out |>
wind filter(State %in% input$polygons)
})
<- reactive({
sst.out which(names(sst.rast) == input$raster)]]
sst.rast[[
})
## Create map w/ non-reactive components
$mymap <- renderLeaflet({
output
## Static Leaflet basemap and widgets
leaflet() |>
setView(lng = -73, lat = 41.5, zoom = 6) |>
addProviderTiles(provider = providers$Esri.OceanBasemap, group = "Ocean Basemap",
options = providerTileOptions(zIndex = -10)) |>
addProviderTiles(provider = providers$Esri.WorldImagery, group = "World Imagery",
options = providerTileOptions(zIndex = -10)) |>
addProviderTiles(provider = providers$OpenStreetMap, group = "Open Street Map",
options = providerTileOptions(zIndex = -10)) |>
addLayersControl(baseGroups = c("Ocean Basemap", "World Imagery", "Open Street Map"),
overlayGroups = c("SST", "Offshore Wind Leases", "Tracks"),
options = layersControlOptions(collapsed = TRUE, autoZIndex = FALSE),
position = "bottomleft") |>
addScaleBar(position = "bottomright") |>
addMeasure(position = "topleft",
primaryLengthUnit = "kilometers",
primaryAreaUnit = "hectares",
activeColor = "#3D535D",
completedColor = "#7D4479") |>
addMouseCoordinates()
#close renderLeaflet
})
## Add reactive elements to Leaflet map
observe({
leafletProxy(mapId = "mymap") |>
clearMarkers() |>
clearShapes() |>
clearImages() |>
clearControls() |>
addRasterImage(x = sst.out(),
colors = rast.pal2,
opacity = 1,
group = "SST") |>
addImageQuery(sst.out(), group = "SST") |> #add raster query
addLegend_decreasing(pal = rast.pal2,
values = as.vector(values(sst.rast)),
title = "SST (\u00B0C)",
decreasing = TRUE) |>
addPolygons(data = wind.out(),
color = ~poly.pal(Shape_Area),
fillOpacity = 1,
stroke = FALSE,
label = ~paste0("Area: ", Shape_Area),
group = "Offshore Wind Leases") |>
addLegend_decreasing(pal = poly.pal,
values = wind.out()$Shape_Area,
title = "Area (km<sup>2</sup>)",
decreasing = TRUE,
opacity = 1) |>
addPolylines(data = tracks.out(),
color = ~tracks.pal(id),
opacity = 0.75,
weight = 4,
label = ~paste0("ID: ", id),
group = "Tracks") |>
addLegend(pal = tracks.pal,
values = tracks.out()$id,
title = "ID",
position = "topleft")
#close observe
})
#close server function
}
###############
### Run app ###
###############
shinyApp(ui = ui, server = server)