library(shiny)
library(bslib)
# Define user interface (UI)
<- page_sidebar(
ui title = "My app",
sidebar = sidebar(
title = "Inputs"
),"Main content area for outputs"
)
# Define server
<- function(input, output, session) {
server
# Add code here for doing computations and producing output
}
# Run app
shinyApp(ui, server)
1 Introduction to Shiny
GitHub repo folder with example R scripts for creating Shiny apps
There is a wide array of online materials that provide extensive descriptions of Shiny. Rather than reinvent the wheel, please refer to the list of resources from the Materials page. The Shiny for R tutorial and Mastering Shiny are good places to start.
Exercise 1
Code for Exercise 1
Using the {bslib} Shiny app skeleton:
- Change title to “Skeleton Shiny app”
- Add a brief sentence to place under the sidebar title
- Change the text shown for the main panel
Solution for Exercise 1
library(shiny)
library(bslib)
# Define user interface (UI)
<- page_sidebar(
ui title = "Skeleton Shiny app",
sidebar = sidebar(
title = "Inputs",
"Additional info providing context to the widgets and/or app use."
),"Main content area for outputs, which can include plots, images, tables, and text!"
)
# Define server
<- function(input, output, session) {
server
# Add code here for doing computations and producing output
}
# Run app
shinyApp(ui, server)
Exercise 2
Code for Exercise 2
library(palmerpenguins)
library(ggplot2)
library(shiny)
library(bslib)
# Define UI
<- page_sidebar(
ui title = "Penguins dashboard",
# Define sidebar inputs
sidebar = sidebar(
title = "Histogram controls",
#create dropdown selection for numeric columns
varSelectInput(
inputId = _____,
label = "Select variable",
data = dplyr::select_if(penguins, is.numeric)
),
#create slider input for histogram
sliderInput("bins", "Number of bins", min = 3, max = 100, value = 30, step = 1)
#close sidebar
),
# Main panel content
plotOutput("figure")
#close page_sidebar
)
# Define server
<- function(input, output, session) {
server
# Create histogram based on selection from inputs
$_____ <- renderPlot({
outputggplot(penguins) +
geom_histogram(aes(!!input$variable), color = "black", fill = "cadetblue",
bins = input$bins) +
theme_bw(base_size = 20)
})
}
# Run app
shinyApp(ui, server)
Using the included code:
- Fill in the blank for the missing inputId
- Fill in the blank for the missing output object
- Change the slider values to have a minimum of 2, maximum of 10, and a default starting value of 5
Solution for Exercise 2
library(palmerpenguins)
library(ggplot2)
library(shiny)
library(bslib)
# Define UI
<- page_sidebar(
ui title = "Penguins dashboard",
# Define sidebar inputs
sidebar = sidebar(
title = "Histogram controls",
#create dropdown selection for numeric columns
varSelectInput(
inputId = "variable",
label = "Select variable",
data = dplyr::select_if(penguins, is.numeric)
),
#create slider input for histogram
sliderInput("bins", "Number of bins", min = 2, max = 10, value = 5, step = 1)
#close sidebar
),
# Main panel content
plotOutput("figure")
#close page_sidebar
)
# Define server
<- function(input, output, session) {
server
# Create histogram based on selection from inputs
$figure <- renderPlot({
outputggplot(penguins) +
geom_histogram(aes(!!input$variable), color = "black", fill = "cadetblue",
bins = input$bins) +
theme_bw(base_size = 20)
})
}
# Run app
shinyApp(ui, server)